
enquiries@sure-core.com sureCore Ltd, Sheffield Technology Park, Cooper Buildings, Arundel Street, Sheffield S1 2NS, UNITED KINGDOM
www.sure-core.com

WHEN LOW POWER IS PARAMOUNT

WHITE PAPER 4

Improving the Efficiency
of AI Applications Using
In-Memory Computation

TONY STANSFIELD
CTO, SURECORE LIMITED

Improving The
Efficiency Of AI
Applications Using In-
Memory Computation
Tony Stansfield, CTO, SureCore Limited

This white paper introduces sureCore’s CompuRAM™ platform – SRAM architecture
extensions to support In-Memory Computation. This is a useful technology for improving
the power-performance of AI applications, and is particularly applicable to power-
constrained applications – for instance when AI techniques are used to improve the
functionality of stand-alone devices or battery-powered but network-connected devices.
The white paper explains why SRAM and In-Memory Computation are important for AI
applications, then explains some issues relevant to SRAM circuit optimisation for AI, before
moving on to the properties of Artificial Neural Networks and the vector dot product, and
the features of CompuRAM that support them. A definition of In-Memory Computation and
how it differs from other ways to implement high-performance computation is also
included.

Artificial intelligence and the need for efficient SRAM
In recent years, Artificial Intelligence (AI) has become a significant user of SRAM, as can be
seen in the development of large, massively parallel, server chips that contain hundreds or
thousands of individual processors. Each processor has its own working memory and the
overall chip can contain 10s or 100s of Mbytes of SRAM, leading to SRAM being the single
largest component of chip area in these devices. This means that even minor improvements
in SRAM area, power, or reliability can have a noticeable impact on chip-level performance.

AI is increasingly moving out of the datacentre and into edge devices. For example:

• Adaptive control of noise cancellation in earbuds, to suppress background noise
while still allowing through important sounds (sirens, babies crying, etc).

• Pre-processing of images in security cameras to identify relevant changes (e.g.
people entering or leaving the field of view) and to screen out false positives (such as
pets walking across a lawn)

These applications are typically adding additional functionality to already power-constrained
products and the ideal scenario is to add these new features without affecting battery life.
Therefore, SoCs developed for these applications have different requirements to the
datacentre AI chips – peak compute capability is no longer the key goal, with peak power
and energy per operation being more relevant. Such SoCs have different architectures that
trade flexibility for efficiency. For instance, an increasingly common goal in edge AI is to
exploit some form of ‘In-Memory Compute’ (IMC). This entails moving some computational
resources away from the processor and into the memory system (see ‘What is In-Memory

Computation?’ for more details). This increases power efficiency by reducing bus traffic but
requires the correct placement of data in memory in order to be able to fully use those
computational resources.

An SRAM developer’s view of memory for AI
sureCore is an established supplier of low-power SRAM and register file IP and related
design services. We provide both standard products and optimised memory subsystems for
specific applications. AI, and especially edge AI, is a potentially large market with some
specific properties that make it worth re-optimising the memory subsystem to support it
(see Table 1 for some examples of possible memory optimisations). sureCore develops
application-optimised subsystems in partnership with customers who understand the
application space – a combination of their application knowledge and sureCore’s deep
memory expertise produces a better result than either could achieve in isolation. From a
sureCore perspective, such partnerships use our existing technologies as a platform to build
on, with application knowledge guiding the choice of which technologies to use, and how to
best combine them to meet the overall system goals. sureCore has also been investigating
how to extend this technology platform to support other features useful for edge AI – in
particular, what we can do to support In-Memory Computing. The rest of this white paper
describes these features, starting firstly with a description of the properties of AI
applications and then moving on to the implications for SRAM and for IMC.

Table 1 Possible SRAM tradeoffs related to AI applications

Trade-off Description Usefulness to AI

Read power
vs Write
power

Circuit optimisations can reduce read
power at the expense of increased write
power (or vice versa). Usefulness of
these optimisations depends on ratio of
reads to writes

In deployed applications
weights are read frequently,
but only rarely updated,
therefore have very skewed
read/write ratio, so read power
optimisation is attractive

Leakage vs
active
power

It is possible to reduce leakage at the
expense of active power, or at the
expense of time to switch in and out of
sleep states

Depends on proportion of time
the application is asleep rather
than active. Also depends on
frequency of switching states

Speed vs
bandwidth
vs area

Small (low capacity) memory instances
are faster than larger ones, but larger
ones are more area efficient for the
same total storage. Also, a large memory
with a wide word has a higher total
bandwidth than a narrower and faster
memory.

AI has deterministic memory
access patterns, so aggregate
bandwidth is likely more
important than speed for a
single access

AI algorithm architecture
Artificial Neural Networks are the most common architecture used for AI applications. Such
networks consist of a large number of interconnected ‘neurons,’ where each neuron has an
output and one or more inputs. The output value is generated from a weighted sum of input

values. Figure 1 shows some example neural
networks with neurons represented as green
circles and arrows representing the input and
output connections.1 Figure 1a is a very
simplified example where neurons are arranged
in layers (columns) and in each layer every
neuron is connected to all the inputs to that
layer. However, this structure is not used in
practice as it does not scale well – the total
number of weights that need to be set (and to
be stored) per layer is equal to the number of
inputs multiplied by the number of neurons.
More practical networks are sparsely
connected so that each neuron only connects
to a subset of the possible inputs – more like
Figure 1b. There are some useful features of
such sparsely connected networks:

• There are clusters of neurons that share
the same inputs
• Not all layers follow the same clustering
pattern – there are layers that take inputs from
across the clusters in a previous layer
• One common case is the ‘Convolutional
Neural Network’, where equivalent neurons in
different clusters use the same weights. This
significantly reduces the number of different
weights that have to be chosen and to be
stored.

Convolutional neural networks are potentially
much simpler to support with dedicated
hardware, as the reuse of weights across
neurons mean that the same hardware can be
used to process multiple neurons – increasing

the size of the input does not automatically require more weight memory, or more
computing hardware, as the larger input can use the same hardware resources but take
longer to process.

1 Note that these diagrams are for illustration only. The precise network topology in an ANN is outside the
scope of this white paper, except where it has an impact on the requirements for hardware used to implement
the network.

Figure 1 Example neural networks

a) simple fully-connected network

b) sparsely connected network

A key algorithm for AI and its implications for IMC architecture
A key algorithm for AI applications is the vector dot product2 – pairwise multiplication of
two lists of numbers, followed by summing the results. This is a building block of matrix
multiplication, which in turn is a building block for describing artificial neural networks. An
efficient implementation of this algorithm is therefore an important component of an IMC
platform.

The dot product3 of two vectors a and b can be defined as:

𝒂 ∙ 𝒃 = %𝑎!𝑏!

"#$

!%&

= 𝑎&𝑏& + 𝑎$𝑏$ +⋯+ 𝑎"#$𝑏"#$

Note that each of the individual numbers ak (or bk) is itself a binary-weighted vector of bits:

𝑎! =%2'
(#$

'%&

𝑎!,' and 𝑏! = % 2*𝑏!,*

+#$

*%&

So:

𝑎!𝑏! = +%2'𝑎!,'

(#$

'%&

,-% 2*𝑏!,*

+#$

*%&

. =%% 2'2*𝑎!,'𝑏!,*

+#$

*%&

(#$

'%&

And therefore:

𝒂 ∙ 𝒃 = %𝑎!𝑏!

"#$

!%&

= %%% 2'2*𝑎!,'𝑏!,*

+#$

*%&

(#$

'%&

"#$

!%&

=%2' % 2*%𝑎!,'𝑏!,*

"#$

!%&

+#$

*%&

(#$

'%&

The last step changes the summation order, and can be read from right-to-left as:

• Form the individual bit products across ak and bk.
• Sum equivalent bit products from different words.
• Then shift and add these partial results to produce the final result.

o The shift and add can be a 2-stage process
§ Sum over the bits of b (the stored coefficients)
§ Then sum over the bits of the input data stream.

If done in this way, then the sum over the input data stream can itself be implemented
serially – separate bits of the ak inputs can be sent in separate cycles. This simplifies
hardware requirements, at the expense of increased execution time.4

2 Vector dot product is the same operation as Multiply-Accumulate (MAC), or the SUMPRODUCT() function in a
spreadsheet.
3 In AI, one of the input vectors (e.g. a) is variable, coming directly from the input data or being derived from it.
The other vector (b) is a set of fixed coefficients (usually referred to as weights in the AI context).
4 Serialising data streams in this way is a known way of trading hardware complexity for run time. It is
especially useful in multiplication-intensive applications where the size of a fully parallel hardware multiplier
scales with the product of the word lengths of the two inputs and can be wasteful if required to support more
than one word size. Serialising one or more inputs reduces the hardware cost but requires more cycles per
multiplication (but can allow the use of faster clock rates to mitigate some of this cost).

Introducing CompuRAM – the sureCore IMC platform
The list of features at the end of the previous section forms the basis of CompuRAM, which:

1. Supports bitwise logical operations to combine stored and input data
2. Efficiently forms partial sums of the results of these bitwise operations
3. Supports shift-and-add operations on these partial sums
4. Uses serial data transfer to move data in and out of IMC-capable memories.

Items 1 and 2 in this list are implemented with efficient hardware embedded in the bit cell
arrays of a modified version of sureCore’s existing PowerMiser™ low-power SRAM
architecture. Shift and add operations can be implemented in the SRAM periphery using
custom logic that is tightly integrated with the SRAM I/O circuits. Finally, serial data transfer
can be implemented using a combination of synthesised logic and sureCore’s multiport
register file technology.

PowerMiser™ saves power in two basic ways:

1. It is a modular architecture and ensures that only those components that are needed
for each memory access are active.

2. It uses energy-optimised signalling techniques to move data between the modules.

Figure 2 shows how a PowerMiser™ core is modified to implement IMC operations. Firstly,
multiple modules (e.g., the Banks in Figure 2) can be activated at once to get higher-
bandwidth access to the coefficient store. Then the necessary extra circuits to combine
coefficients and external inputs are added in, but the power-efficient signalling is retained
for moving data within the memory.

Platform flexibility is provided by:

• Choice of the sum limits l, m, n in the preceding equations (respectively the width of
an input word, the width of a stored coefficient, and the length of the vectors a, b).
These can all be set according to the needs of an individual application or left with
some flexibility in order to allow an SoC to be adapted in the future.

• Choice of memory sizes – i.e., the number of coefficients that can be stored
• Choice of how data flows between IMC memories – i.e., the form of the synthesised

logic referred to above.

Figure 2 PowerMiser™ core with IMC additions

Banks in the memory store multiple sets of
coefficients. The decoders are used to access
the coefficients needed for a particular
calculation, which are then combined with
bits of the a input words as shown.

A single bit from a is combined with multiple
coefficient bits. These can be multiple bits of
the same word, bk, or coefficients from
multiple artificial neurons that share the
same inputs.

…
 Bank 0

De
co

de
r 0

& + & + & + & +

…
 Bank 1

De
co

de
r 1

& + & + & + & +

a0,i

a1,i
…

…

Partial sums

What is In-Memory Computation?
Figure 3 illustrates four possible approaches to combining processors, memory, and logic in
an SoC in order to achieve high computational performance.

These four approaches can be distinguished by the answers to the following questions:

1. How much simultaneous processing is there?

Figure 3(a) uses a single processor and is therefore limited by single-processor
performance and by the ability to move data to/from that processor fast enough.
The other examples rely on parallel operation and therefore require that there is
sufficient intrinsic parallelism in the application for this to be possible

2. Which side of the memory bus does the processing take place?

In Figure 3(c) and (d), some processing logic is moved to the memory side of the bus
rather than the processor side. This has two principal advantages:

a. Traffic on the bus is reduced. For instance, in the case of the vector dot
product example, it is only the result of the dot product that needs to be sent
to a processor, not all the individual components of each vector. Reduced bus
traffic saves power, and/or frees up bus capacity for other purposes.

b. The processor word width no longer limits the amount of data that is
processed in each cycle. Instead, a wider word based on the properties of the
memory system can be used.5 This increases the use of available parallelism.

However, there are also some disadvantages:

a. Using a different word width to that used by the processors creates potential
issues with ensuring that data is correctly aligned.

b. ALU(s) close to the memory are good for data processing, but not for control-
intensive processing (i.e., running code with lots of if…then…else conditions).

3. Does each ALU have the same (unified) memory view?

In Figure 3(a), (b) and (c), all ALUs and processors connect to the same memory bus
and have equivalent ease of access to all addresses. However, in Figure 3(d) ALUs are
closely coupled to subsections of the memory and have limited or no access to other
subsections. While this arrangement provides higher bandwidth between ALU and
memory than any of the others, it requires that data is correctly distributed across
the different subsections in order to actually exploit this available bandwidth.

Taken together, these questions show that In-Memory Computation is only effective if an
application:

• Has significant amounts of data parallelism and does not require a lot of control code
• Has predictable memory access patterns, allowing data to be correctly distributed

across multiple memories

5 In Figure 3(c) the ALU can operate on complete cache lines, while in Figure 3(d) even wider data words are
possible

AI is an application space that relies heavily on matrix and vector operations hence making it
highly amenable for to the benefits provided by In-Memory Computation.

Figure 3 Four possible SoC compute architectures

(a) Single processor architecture.

• Processor operates on single
words coming from register file,
cache, or other on-chip memory

• Performance is ultimately limited
by memory bus bandwidth for
large data sets (i.e., that don’t fit
in the cache)

(b) Shared memory parallel processor

• Separate processors work on
different parts of the data set

• Performance still limited by
memory bus bandwidth for large
data sets

• Requires processing to be
organised so that different parts
of the data can be in different
caches

(c) ‘Near-memory computation’

• ALU functionality added on the
memory side of the bus

• Good for data processing, not for
control-intensive code

• Uses word width of memory
system (cache lines), not CPU

• Processor(s) and memory bus are
free for other tasks

(d) ‘In-memory computation’

• ALUs closely coupled with
individual memory banks in the
on-chip SRAM

• Increases available bandwidth
between storage and ALUs – not
limited by processor or cache

• Requires that data is distributed
across the multiple banks in order
to fully exploit available ALUs

SRAM

ProcessorCache

Fetch A

Fetch B

Store C

SRAM

ProcessorCache

ProcessorCache

Fetch A0

Fetch B0

Store C0

Fetch A1

Fetch B1

Store C1

SRAM

ProcessorCache

ProcessorCache

ALU

Fetch A0,A1

Fetch B0,B1

Store C0,C1

ProcessorCache

ProcessorCache

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Tony Stansfield

Tony has over 35 years of semiconductor industry
experience in a variety of technical roles. He started his
career with the Inmos UK Memory and Graphics group,
where he designed SRAMs and Caches for multiple
Inmos products. He later joined HP Labs to work on
high-speed programmable imaging datapaths, and was a
co-founder and VP Hardware Architecture at Elixent, the
company created to deliver custom Silicon IP based on
that technology. Following the acquisition of Elixent by
Panasonic, he was a key member of the team that
integrated this technology into multiple generations of
TV chipsets. Tony is cited as an inventor on 23 patents
covering SRAM, CAM, low-power electronics, and
programmable logic.

sureCore™ -- When low power is paramount™

sureCore, the ultra-low power, embedded memory specialist, is the low-power innovator who
empowers the IC design community to meet aggressive power budgets through a portfolio of
ultra-low power memory design services and standard IP products. sureCore’s low-power
engineering methodologies and design flows meet the most exacting memory requirements
with a comprehensive product and design services portfolio that create clear market
differentiation for customers. The company’s low-power product line encompasses a range of
close to near-threshold, silicon proven, process-independent SRAM IP.

www.sure-core.com

CompuRAM, PowerMiser and sureCore are trademarks of sureCore Limited

