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This white paper introduces sureCore’s CompuRAM™ platform – SRAM architecture 
extensions to support In-Memory Computation. This is a useful technology for improving 
the power-performance of AI applications, and is particularly applicable to power-
constrained applications – for instance when AI techniques are used to improve the 
functionality of stand-alone devices or battery-powered but network-connected devices. 
The white paper explains why SRAM and In-Memory Computation are important for AI 
applications, then explains some issues relevant to SRAM circuit optimisation for AI, before 
moving on to the properties of Artificial Neural Networks and the vector dot product, and 
the features of CompuRAM that support them. A definition of In-Memory Computation and 
how it differs from other ways to implement high-performance computation is also 
included. 

Artificial intelligence and the need for efficient SRAM 
In recent years, Artificial Intelligence (AI) has become a significant user of SRAM, as can be 
seen in the development of large, massively parallel, server chips that contain hundreds or 
thousands of individual processors. Each processor has its own working memory and the 
overall chip can contain 10s or 100s of Mbytes of SRAM, leading to SRAM being the single 
largest component of chip area in these devices. This means that even minor improvements 
in SRAM area, power, or reliability can have a noticeable impact on chip-level performance. 

AI is increasingly moving out of the datacentre and into edge devices. For example: 

• Adaptive control of noise cancellation in earbuds, to suppress background noise 
while still allowing through important sounds (sirens, babies crying, etc). 

• Pre-processing of images in security cameras to identify relevant changes (e.g. 
people entering or leaving the field of view) and to screen out false positives (such as 
pets walking across a lawn) 

These applications are typically adding additional functionality to already power-constrained 
products and the ideal scenario is to add these new features without affecting battery life. 
Therefore, SoCs developed for these applications have different requirements to the 
datacentre AI chips – peak compute capability is no longer the key goal, with peak power 
and energy per operation being more relevant. Such SoCs have different architectures that 
trade flexibility for efficiency. For instance, an increasingly common goal in edge AI is to 
exploit some form of ‘In-Memory Compute’ (IMC). This entails moving some computational 
resources away from the processor and into the memory system (see ‘What is In-Memory 



Computation?’ for more details). This increases power efficiency by reducing bus traffic but 
requires the correct placement of data in memory in order to be able to fully use those 
computational resources. 

An SRAM developer’s view of memory for AI 
sureCore is an established supplier of low-power SRAM and register file IP and related 
design services. We provide both standard products and optimised memory subsystems for 
specific applications. AI, and especially edge AI, is a potentially large market with some 
specific properties that make it worth re-optimising the memory subsystem to support it 
(see Table 1 for some examples of possible memory optimisations). sureCore develops 
application-optimised subsystems in partnership with customers who understand the 
application space – a combination of their application knowledge and sureCore’s deep 
memory expertise produces a better result than either could achieve in isolation. From a 
sureCore perspective, such partnerships use our existing technologies as a platform to build 
on, with application knowledge guiding the choice of which technologies to use, and how to 
best combine them to meet the overall system goals. sureCore has also been investigating 
how to extend this technology platform to support other features useful for edge AI – in 
particular, what we can do to support In-Memory Computing. The rest of this white paper 
describes these features, starting firstly with a description of the properties of AI 
applications and then moving on to the implications for SRAM and for IMC. 

Table 1 Possible SRAM tradeoffs related to AI applications 

Trade-off Description Usefulness to AI 

Read power 
vs Write 
power  

Circuit optimisations can reduce read 
power at the expense of increased write 
power (or vice versa). Usefulness of 
these optimisations depends on ratio of 
reads to writes 

In deployed applications 
weights are read frequently, 
but only rarely updated, 
therefore have very skewed 
read/write ratio, so read power 
optimisation is attractive 

Leakage vs 
active 
power 

It is possible to reduce leakage at the 
expense of active power, or at the 
expense of time to switch in and out of 
sleep states 

Depends on proportion of time 
the application is asleep rather 
than active. Also depends on 
frequency of switching states 

Speed vs 
bandwidth 
vs area 

Small (low capacity) memory instances 
are faster than larger ones, but larger 
ones are more area efficient for the 
same total storage. Also, a large memory 
with a wide word has a higher total 
bandwidth than a narrower and faster 
memory. 

AI has deterministic memory 
access patterns, so aggregate 
bandwidth is likely more 
important than speed for a 
single access 

 



AI algorithm architecture
Artificial Neural Networks are the most common architecture used for AI applications. Such 
networks consist of a large number of interconnected ‘neurons,’ where each neuron has an 
output and one or more inputs. The output value is generated from a weighted sum of input 

values. Figure 1 shows some example neural 
networks with neurons represented as green 
circles and arrows representing the input and 
output connections.1 Figure 1a is a very 
simplified example where neurons are arranged 
in layers (columns) and in each layer every 
neuron is connected to all the inputs to that 
layer. However, this structure is not used in 
practice as it does not scale well – the total 
number of weights that need to be set (and to 
be stored) per layer is equal to the number of 
inputs multiplied by the number of neurons. 
More practical networks are sparsely 
connected so that each neuron only connects 
to a subset of the possible inputs – more like 
Figure 1b. There are some useful features of 
such sparsely connected networks: 

• There are clusters of neurons that share 
the same inputs 
• Not all layers follow the same clustering 
pattern – there are layers that take inputs from 
across the clusters in a previous layer 
• One common case is the ‘Convolutional 
Neural Network’, where equivalent neurons in 
different clusters use the same weights. This 
significantly reduces the number of different 
weights that have to be chosen and to be 
stored. 

Convolutional neural networks are potentially 
much simpler to support with dedicated 
hardware, as the reuse of weights across 
neurons mean that the same hardware can be 
used to process multiple neurons – increasing 

the size of the input does not automatically require more weight memory, or more 
computing hardware, as the larger input can use the same hardware resources but take 
longer to process. 

 
1 Note that these diagrams are for illustration only. The precise network topology in an ANN is outside the 
scope of this white paper, except where it has an impact on the requirements for hardware used to implement 
the network. 

Figure 1 Example neural networks 

a) simple fully-connected network 

 
 

b) sparsely connected network 

 
 

 



A key algorithm for AI and its implications for IMC architecture 
A key algorithm for AI applications is the vector dot product2 – pairwise multiplication of 
two lists of numbers, followed by summing the results. This is a building block of matrix 
multiplication, which in turn is a building block for describing artificial neural networks. An 
efficient implementation of this algorithm is therefore an important component of an IMC 
platform. 

The dot product3 of two vectors a and b can be defined as: 
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The last step changes the summation order, and can be read from right-to-left as: 

• Form the individual bit products across ak and bk. 
• Sum equivalent bit products from different words. 
• Then shift and add these partial results to produce the final result. 

o The shift and add can be a 2-stage process 
§ Sum over the bits of b (the stored coefficients) 
§ Then sum over the bits of the input data stream. 

If done in this way, then the sum over the input data stream can itself be implemented 
serially – separate bits of the ak inputs can be sent in separate cycles. This simplifies 
hardware requirements, at the expense of increased execution time.4 

 
2 Vector dot product is the same operation as Multiply-Accumulate (MAC), or the SUMPRODUCT() function in a 
spreadsheet. 
3 In AI, one of the input vectors (e.g. a) is variable, coming directly from the input data or being derived from it. 
The other vector (b) is a set of fixed coefficients (usually referred to as weights in the AI context). 
4 Serialising data streams in this way is a known way of trading hardware complexity for run time. It is 
especially useful in multiplication-intensive applications where the size of a fully parallel hardware multiplier 
scales with the product of the word lengths of the two inputs and can be wasteful if required to support more 
than one word size. Serialising one or more inputs reduces the hardware cost but requires more cycles per 
multiplication (but can allow the use of faster clock rates to mitigate some of this cost). 



Introducing CompuRAM – the sureCore IMC platform  
The list of features at the end of the previous section forms the basis of CompuRAM, which: 

1. Supports bitwise logical operations to combine stored and input data 
2. Efficiently forms partial sums of the results of these bitwise operations 
3. Supports shift-and-add operations on these partial sums 
4. Uses serial data transfer to move data in and out of IMC-capable memories. 

Items 1 and 2 in this list are implemented with efficient hardware embedded in the bit cell 
arrays of a modified version of sureCore’s existing PowerMiser™ low-power SRAM 
architecture. Shift and add operations can be implemented in the SRAM periphery using 
custom logic that is tightly integrated with the SRAM I/O circuits. Finally, serial data transfer 
can be implemented using a combination of synthesised logic and sureCore’s multiport 
register file technology. 

PowerMiser™ saves power in two basic ways: 

1. It is a modular architecture and ensures that only those components that are needed 
for each memory access are active. 

2. It uses energy-optimised signalling techniques to move data between the modules. 

Figure 2 shows how a PowerMiser™ core is modified to implement IMC operations. Firstly, 
multiple modules (e.g., the Banks in Figure 2) can be activated at once to get higher-
bandwidth access to the coefficient store. Then the necessary extra circuits to combine 
coefficients and external inputs are added in, but the power-efficient signalling is retained 
for moving data within the memory. 

Platform flexibility is provided by: 

• Choice of the sum limits l, m, n in the preceding equations (respectively the width of 
an input word, the width of a stored coefficient, and the length of the vectors a, b). 
These can all be set according to the needs of an individual application or left with 
some flexibility in order to allow an SoC to be adapted in the future. 

• Choice of memory sizes – i.e., the number of coefficients that can be stored 
• Choice of how data flows between IMC memories – i.e., the form of the synthesised 

logic referred to above. 

Figure 2 PowerMiser™ core with IMC additions 

 

 

Banks in the memory store multiple sets of 
coefficients. The decoders are used to access 
the coefficients needed for a particular 
calculation, which are then combined with 
bits of the a input words as shown. 

A single bit from a is combined with multiple 
coefficient bits. These can be multiple bits of 
the same word, bk, or coefficients from 
multiple artificial neurons that share the 
same inputs. 
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What is In-Memory Computation? 
Figure 3 illustrates four possible approaches to combining processors, memory, and logic in 
an SoC in order to achieve high computational performance.  

These four approaches can be distinguished by the answers to the following questions: 

1. How much simultaneous processing is there? 

Figure 3(a) uses a single processor and is therefore limited by single-processor 
performance and by the ability to move data to/from that processor fast enough. 
The other examples rely on parallel operation and therefore require that there is 
sufficient intrinsic parallelism in the application for this to be possible 

2. Which side of the memory bus does the processing take place? 

In Figure 3(c) and (d), some processing logic is moved to the memory side of the bus 
rather than the processor side. This has two principal advantages: 

a. Traffic on the bus is reduced. For instance, in the case of the vector dot 
product example, it is only the result of the dot product that needs to be sent 
to a processor, not all the individual components of each vector. Reduced bus 
traffic saves power, and/or frees up bus capacity for other purposes. 

b. The processor word width no longer limits the amount of data that is 
processed in each cycle. Instead, a wider word based on the properties of the 
memory system can be used.5 This increases the use of available parallelism. 

However, there are also some disadvantages: 

a. Using a different word width to that used by the processors creates potential 
issues with ensuring that data is correctly aligned. 

b. ALU(s) close to the memory are good for data processing, but not for control-
intensive processing (i.e., running code with lots of if…then…else conditions).  
 

3. Does each ALU have the same (unified) memory view? 

In Figure 3(a), (b) and (c), all ALUs and processors connect to the same memory bus 
and have equivalent ease of access to all addresses. However, in Figure 3(d) ALUs are 
closely coupled to subsections of the memory and have limited or no access to other 
subsections. While this arrangement provides higher bandwidth between ALU and 
memory than any of the others, it requires that data is correctly distributed across 
the different subsections in order to actually exploit this available bandwidth. 

Taken together, these questions show that In-Memory Computation is only effective if an 
application: 

• Has significant amounts of data parallelism and does not require a lot of control code 
• Has predictable memory access patterns, allowing data to be correctly distributed 

across multiple memories 

 
5 In Figure 3(c) the ALU can operate on complete cache lines, while in Figure 3(d) even wider data words are 
possible 



AI is an application space that relies heavily on matrix and vector operations hence making it 
highly amenable for to the benefits provided by In-Memory Computation. 

Figure 3 Four possible SoC compute architectures 

 

(a) Single processor architecture. 

• Processor operates on single 
words coming from register file, 
cache, or other on-chip memory 

• Performance is ultimately limited 
by memory bus bandwidth for 
large data sets (i.e., that don’t fit 
in the cache) 

 

(b) Shared memory parallel processor 

• Separate processors work on 
different parts of the data set  

• Performance still limited by 
memory bus bandwidth for large 
data sets 

• Requires processing to be 
organised so that different parts 
of the data can be in different 
caches 

 

(c) ‘Near-memory computation’ 

• ALU functionality added on the 
memory side of the bus 

• Good for data processing, not for 
control-intensive code 

• Uses word width of memory 
system (cache lines), not CPU  

• Processor(s) and memory bus are 
free for other tasks 

 

(d) ‘In-memory computation’ 

• ALUs closely coupled with 
individual memory banks in the 
on-chip SRAM 

• Increases available bandwidth 
between storage and ALUs – not 
limited by processor or cache  

• Requires that data is distributed 
across the multiple banks in order 
to fully exploit available ALUs 
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sureCore™ -- When low power is paramount™ 

sureCore, the ultra-low power, embedded memory specialist, is the low-power innovator who 
empowers the IC design community to meet aggressive power budgets through a portfolio of 
ultra-low power memory design services and standard IP products. sureCore’s low-power 
engineering methodologies and design flows meet the most exacting memory requirements 
with a comprehensive product and design services portfolio that create clear market 
differentiation for customers. The company’s low-power product line encompasses a range of 
close to near-threshold, silicon proven, process-independent SRAM IP. 
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